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and, then, eliminating the variable Q,,, we can finally obtain the equations of motion of 
system (4.1) in thefrom (2.1). 
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The author thanks A.P. Markeev for his interest and for useful discussions. 
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THE APPLICATION OF ASYMPTOTIC METHODS TO CERTAIN STOCHASTIC PROBLEMS 
OF THE DYNAMICS OF VIBROPERCUSSIVE SYSTEMS* 

A.S. KOVALHVA 

Translated by J.J.D. 

Motion of certain vibropercussive systems acted upon by a random, non-white 
noise perturbation is studied, using the limit theorems of the convergence 
of the solutions of stochastic differential equations to a diffusion 
process. The results, first obtained in /l, 2/ for smooth systems, are 
generalizedtoinclude systems with discontinuous and impulsive right-hand 
sides /3-5/ by approximating the discontinuous functions by a converging 
sequence of smooth functions. An analogous approach is described for 
vibropercussive systems, and regions of stability of the perturbed motion 
are constructed. 

Analytic expressions describing the probability density and disper- 
sions of velocity and coordinates are well known /6, 7/ in the case of 
linear systems excited by white noise, under elastic impact. The method 
of non-smooth transformations /8/ is used for more complex systems to 
construct the FPK equations characterizing the distribution of the energy 
of the oscillations /9, lo/. Basic results are also obtained for systems 
excited by white noise. 

1. Consider a quasiconservative, vibropercussive system. The equation of motion and 

condition of impact against a one-sided stop have the form 

2" f R*z = sg (t, 5, 2', e) (1.1) 

z = A, x+* = -Rz_‘, R = 1 - &, r = const = 0 (1) (1.2) 

Here A is the size of the gap (A >O) or displacement (A(O), z_' and 3,' denote the 

velocities before and after the impact and E is a small parameter. The piecewise-continuous 

function g characterizes the additional non-conservative terms and represents, for fixed 2 

*Prikl.Matem.Mekhan.,48,Sri'33-737.1984 



and i, a measurable random process. 
When e =O, the generating conservative 

r(t) = --f(w) X(9, a), 
OD 
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system has the following general integral f7f: 

0 = 2nlT (1.3) 

x (tp, 0) = T-lkz_ (SP - k%*)‘-” ee*, *=@tJ)tt--bo) 

Here ~(9, o) is the periodic Green's function /ll/, T is the period between collisions, 
Jis the impact momantum and to is the impact phase. The function x(9,0) is continuous and 
its first derivative becomes discontinuous at g= 2xk, k= 0, fly.*.. The relation between the 
frequency of motion and the momentum is described by the following condition of impact: 

A # 0: .z (to) = A, J (0) = A/x (0, a) I= -252 tg (nQ/o) (1.4) 
A -- 0: 0 = 28 

Assuming that the perturbations are small and the impact nearly elastic, we can presuppose 
that the character of the motion is preserved in the quasiconservative vibropercussive system 
and the mode of motion is almost a single T-periodic impact. Then the perturbed motion can 
be analysed using the methods employed to anafyse systems which are almost conservative. 

We shall use the procedure given in /2/ to reduce system (1.1) to standard form. Introduc- 

ing the new momentum-phase variables 

2 = -Jx(*, of, 2‘ = -30x*(*, 0) (i.5) 

we obtain, after transformations, equations analogous to those given in /12/ 

J' = -kg (t, -Jx, -Jox*, 6) @xQ (i&) 

9' = o (J) it + 4d-‘g (t, -Jx, -Jox~. e) (Jx)d 

The relation o(J) is given by condition (1.4). The derivative (Jx)J is computed taking 
the relation connecting x and o(J) into account. The right-hand sides of (1.6) are 2n- 
periodic in 9. After substituting (1.5) into (1.4) the conditions of impact are transformed 
into the conditions of discontinuity of the momentum: at the instant of impact when 
(k=O,&l,k2 ,... ), J,=RJ_, i.e. when R=i-8% 

9 = 2nk 

J+ - J_ = --e%J_, xp = 2nk (1.7) 

The condition of impact(l.7) cenbeinsertedintothe firstequationof (1.5)with help of 
the &function /13/. Taking into account the relation 9(t) we obtain, to terms O(e*), 

J' = -hegwxQ - e2rgco {Jt)Jr8(q - 2nk) 63) 

V = a, (J) II + 4sJ-‘g (Jx)$l 
g = g V, -Jx, -Jox+., e), Jk = J_ I- 

The non-isochronous character of the system, i.e. 
the momentum J, leads to computational complications. 

the dependence of the frequency o on 
Henceforth, we shall assume that the 

gap is small A = etAI. ‘3Thi.S Will simplify the computations considerably, without affecting 
the qualitative representations concerning the form of the solution, since the generating 
system will become isochronous 0 = COO = 2R. Let us introduce the substitution 

t'= z1 + e2A1; (1.9) 
51 = -Jx” (t - rp), ~1’ = -Jxto (t - rp) 

where x0 (t) x x(2%251), and when O,<t<nlQ/ll/,we have 

x0 (f) = (252)-1 sin Qt, xl* = V2 eos Qt (l.iO} 
The substitution (1.9) reduces the initial equation to its standard form 

J'= - 4s Ig - e&P] xtO (t - cp) - ef 2 J&t - cp - kT), T=s/Q (I.ii) 

rp’ = --~EJ-~ ig - eA,Pl f (t - 9) 

The right hand sides of (1.11) are T = n/St-periodicin t. The equations obtained can 
be analysed using the results obtained in /3-5,‘. 

2. Let the system be isochronous and g = g, (%,X,X').+ ag,(t,r,j),so that 

J'= - a+ a Jd (t - cp - kT) + eL.& (t. J, (p) + e*GGpx (t, J, q) @**I 

cp- = eG1, ft, J, cp) + ezG,, (t, J, cp) 

GJI - -4gJ (t, -Jx” (t-- cph -Jxt”(t - 9)) xr’= (t - cp) 
Gj, = -4J% 0, -Jx” (t - tp), -JxrO (t - cp)) f’ (t - cp) 

(2.2) 

j = i, 2 

Let the functions gl and g, be continuous together with their derivatives in I and c'and 
represent, for fixed x and X' I a ~asurable random process satisfying the‘condition of strong 
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mixing /l/, with Mg, = 0. 
Let us put 2 = (J,cp) and introduce the moment characteristics 

Let the conditions 
limits exist uniformly 

2 
Bj (t, s, 2) = M c ac,, (t, z) 

- GI, (s, =) (2.3) 
r=1 

dz, 

eij (t, S, Z) = MGli (t, Z) G11 (s, z), A = {aij}r iv j = 1, 2 

given above for the functions gl,g% all hold, and let the following 
in 2 and t,: 

e+t. 
MG2, (t, Z) dt = F,j (z) (?.S) 

lb+- j dt $ Bj(t,s,t)=Bj(Z), j=1,2 
e-=J to t.4 

e-P. e+t. 

lim + s dt 5 A (t, s, z) = .T (z) 
e-r00 II to 

Then /l--S/ the solution of (2.1) converges weakly to the solution of the system of It0 
equations 

(S) 

where w = {w!, u!~} is a two-dimensional standard Wiener process. 

If gj (k I, x’) = gj (.z,x.')tj(t), where &(t) are stationary random processes with fairly rapidly 
diminishing correlation functions, we can confirm that B = B(J),.1 = .T (J), i.e. the coefficints 
of (2.5) are independent of rP and the first equation of (2.5) can be separated. 

3. Relations (2.1)-(2.5) are of a general character. We shall use them to solve some 
problems of the dynamics of vibropercussive systems. 

I”. Consider a system with parametric perturbations, linear in the intervals between 

impacts. Its motion is described by the equation 

I" + nz (1 + ES (t)) 5 + 2eZbr' -= 0 (3.1) 

and conditions of impact (1.2). We shall assume that the gap is small A = EXAM. Then the 
substitution (1.9) will transform (3.1) to the form (1.U.). 

It is important in most cases to know the behaviour of themean square value of the variable 
J. Introducing the new variable y = J’, we transform system (1.1) to the form 

y'= - BeyP~(t) x"(t- @x;(t-- cp)- &*{[2by&"(t- 'p) - (3.2) 

‘p’ = - Cte62cE (t) [x,0 (t - cpjla - 4~2 [2b$ (t - (p) - 
Q*A,y-'111 x0 (t - (p) 

We write, in accordance with (2.L), 

G, = --8YQ2E (t) 51 0 - (P) 
G,, = -4h2's (t) 5% (t - cp) 

(3.3) 

G?l = -8 [26& (t - rp) - h12A,y'/'xro (t - cp)] 

GT2 = -4 [2bl;, (t - rp) - QzA,y-'/*xO (t - rp)l 

51 (4 = x0 ft) Y,*O (t). &z 0) = fx" Ml"! 53 0) = [xt" @)I;: 

By virtue of (1.10) the functions 5) (j = 1, 2, 3) are continuous and 

51 (Q = (SQ)-l sin 2Q2t, c2 (t) f. (8SZ*)--L (1 - Cos 2Qt) 

&? (t) = '/e (1 f cos 2nt), 0 < t ( OQ 

Let E(t) be a stationary random process with a fairly rapidly decreasing corr@Lation 

function, and spectral density S(h). Then, computing the coefficients of equations (2.4)) we 

obtain 
I& = -2by’. u, = ‘/,WS (xl) y” 

a - ‘!,!A* (y’)“S (2Q), a,, = 11 -- 0 

Consequently the following linear Ito equation corresponds to the process Y': 

dy" = p$dT f alll’:dw (3.5, 

p :t ‘,‘,Q’S (352) - 2 (b + rn-lQ) 
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The conditionofstability in themem square folhms from (3.4) at once: i!i( 0. Aweaker~~~- 

dition of probability stability was obtained in /9f for systems perturbt?cS by white noise. 
Note that when r = 0 we obtain the well-known condition of stability of a system without 

a stop; if E(t)=0 and b= -b%<O, we obtain the conditions for the quenching unstable 
oscillations in the case of inelastic impact 

r<xPfbl (3.5) 

which agrees with that established in /9/. 
2O. The motion of a vibropercussfve system excited by a random force is described by 

the equation 
t" _t 2&3x' t 62% = 8% (t) (3.6) 

and the conditions of impact (1. 2); E(2) is a stationary random process with a fairly xapidly 
decreasing correlation function, and spectral density S (II). Assuming that the gap is small 

A = $A1 and putting 

where the functions 

(1.9)J = y'l*, we reduce (3.6) to the Earm 

~.=-ze4~y,b(t-cp-kT)+ &I,+ e2i&x 

cp' = eC& + eOGe2 

Grx = -85% (d) or' (t - cp), Gs = -4~'9 (t) x" 0 - '~1 

GBlrGez are identical with those computed in Sect,l. 
The diffusion equation for the limit process y'has the form 

dy” = (& _t BI - 2m-%&t’) dr + oil (#‘) dw 

Here, as before, we have &I = --26yD and the quantities &, ull computed from (2.4), 
have the form 

(3.7) 

If s(h) is a rational fractional function and the correlation time E (#) of the PXTOC~SS 
is much shorter than T = z&-I, then summing the series (3.7) ill/ and remembering that 
0 = 28, we obtain 

B IX 4S(Q) 

We obtain a linear equation for the moment m = M(y")2 with the following stationary 
solution: 

fi = 2S(hll) lb f m-%21-' 

we see that the dissipation of energy on impact {r# 0) reduces the oscillation intensity 
in the case of a randcm, wide-band input and assists, when condition (3.5) holds, in quenching 
the unstable oscillations in the system without a stop. 

Notes. 1*. The procedure given here remains valid for systems with extra degrees of 
freedom whose dynamics can be described by the equations _ 

t" + CPZ = eg (f, f, Z,Z',I) 
y' = @(t, z,z, z',e), g a R,, 'F = e*t 

and the impact condition I= A,+'= --R+_'.R=.i-&. Here the function Y satisfies all the 
requirement of Sect.2. 

zQ* The case of a two-sided stop is considered in the same manner, The function I in 
the expression for the general integral-of the conservative system (1.3) and inthe substitu- 
tion (1.51 is replaced here by the following periodic Green's function of second kind /11/: 

The author thanks V.F. Zhuravlev for valuable criticisms and discussions. 
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ON THE PRECESSIONAL - SCREW MOTIONS OF A SOLID IMPlERSED IN LIQUID* 

V.N. RUBANOVSKII 

The Kirchhoff-Klebsch problem on the inertial motion of a solid immersed 
in a liquid is considered. The precessional-screw motions of the solid 
consisting of two screw motions are investigated. The axis of one motion 
is fixed in space, and the other axis is fixed within the body. The 
necessary and sufficient kinematic conditions are given for the precessional- 
screw motions in differential and finite form. A method of finding such 
motions is given, their stability is studied and a geometrical interpreta- 
tion of the body motions is presented. 

1. Consider the problem of the inertial motion of a free solid bounded by a singly 
connected surface and containing multiconnected cavities completely filled with a perfect 
fluid in irrotational motion, in a perfect, homogeneous incompressible fluid unbounded in 
all directions. We will assume that the motion of the fluid outside the body caused by its 
motion is irrotational, and that the fluid is at rest at infinity. 

The kinetic energy T of such a dynamic system can be written, apart from a constant 
determined by the periodic motion of the fluid within the body cavities, in the form /l/ 

(aijPiPj + bijR,Rj + 2cijPiRj)v aij =ajiv bi, = bji 

where all, bij, Cij are constants defined for the given system, while RI R,,R, and PI, Pa, P3 
are projections of the impuslive force R and impulsive couple P of the system on the axes 
of a rectangular Oz,z%x, coordinate system rigidly bound to the body, neglecting the cyclic 
motion.of the fluid within the body cavities. 

Denoting by utand 9, the projections of the translational velocity u and instantaneous 
angular velocity P of the body on the xl axes, we obtain for them the foll.owing expressions: 

u1 = aTlaR,, sz, = BTIBP, 023) (1.1) 

The equations of motion of a body in a fluid have the form /l, 2/ 

dR/dt+Px R-0, dP/dt+Rx(Pfk)+ux R-O (1.3) 

where k z (k,, k,, k3) is the kinetic momentum vector of the cyclic motion of the fluid in the 
body cavities. Equations (1.2) admit of three first integrals 

T = E = const, R* = Ha = const, (P + k).R = hHa = coast (1.3) 

Using the methods of..screw calculus /3/ we introduce the impulsive Q = R + w (P + k) 

and kinematic U = 8 + ou screw, where 0 (04 = 0) is the Clifford number, and write (1.2) 

in the form of a single equation 
dQldt + U x Q = 0 (1.G) 

*Prikl.Matem.Mekhan.,48,5,738-744,1984 


